Heteroscedastic linear models for analysing process data

نویسنده

  • ILMARI JUUTILAINEN
چکیده

In this paper the guidelines for applying heteroscedastic linear models for analysing industrial process data is presented. Heteroscedastic linear models are considered as a good model family for the joint modelling of dispersion and mean. The model selection of heteroscedastic linear model is discussed considering the special features of industrial data. A procedure for dispersion model selection based on the validation deviance related to the gamma model on the squared residuals of the mean model is presented. The model selection procedure is tested using simulated data and also in a real industrial application. The estimation and model selection procedures are relatively simple and can be implemented using standard statistical software. Key-Words: Heteroscedastic linear model, Model selection, Dual response surface, Dispersion modelling, Process data analysis, Validation, Predictive modelling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical estimates for various correlations in longitudinal-dynamic heteroscedastic hierarchical normal models

In this paper, we first define longitudinal-dynamic heteroscedastic hierarchical  normal  models. These models can be used to fit longitudinal data in which the dependency structure is constructed through a dynamic model rather than observations. We discuss different methods for estimating the hyper-parameters. Then the corresponding estimates for the hyper-parameter that causes the association...

متن کامل

Shrinkage estimates for multi-level heteroscedastic hierarchical normal linear models

Empirical Bayes approach is an attractive method for estimating hyperparameters in hierarchical models. But, under the assumption of normality for a multi-level heteroscedastic hierarchical model, which involves several explanatory variables, the analyst may often wonder whether the shrinkage estimators have efficient asymptotic properties in spite of the fact they involve numerous hyperparamet...

متن کامل

Robust Estimation in the Heteroscedastic Linear

We study estiuultion of regression parameters in heteroscedastic linear models when the ntunber of parameters is large. The results

متن کامل

An Assessment of Renewable Energy in Bangladesh through ARIMA, Holt’s, ARCH- GARCH Models

Forecasting of the Renewable Energy plays a major role in optimal decision formula for government and industrial sector in Bangladesh. This research is based on time series modeling with special application to solar energy data for Dhaka city. Three families of time series models namely, the autoregressive integrated moving average models, Holt’s linear exponential smoothing, and the autoregres...

متن کامل

Heteroscedastic linear feature extraction based on sufficiency conditions

Classification of high-dimensional data typically requires extraction of discriminant features. This paper proposes a linear feature extractor, called whitened linear sufficient statistic (WLSS), which is based on the sufficiency conditions for heteroscedastic Gaussian distributions. WLSS approximates, in the least squares sense, an operator providing a sufficient statistic. The proposed method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003